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The Normal Distribution



Learning Objectives

1. Understand the normal distribution, its use cases, and its
structure.

2. Understand the standard normal distribution, and how to
transform to/from it.

3. Understand and apply the empirical rule.

4. Understand the normal approximations to other probability
distributions.





The Normal Distribution

▶ The normal distribution is the most important distribution in
all of statistics and probability.

▶ It is characterized the the typical “bell curve” shape.

▶ It characterizes many natural phenomena (e.g., heights, weights,
measurement errors, reaction times, etc.)

▶ It is a symmetric, bell-shaped curve, characterized by two
parameters

▶ The mean µ.
▶ The variance σ2

▶ Sometimes, researchers will use the standard deviation, σ, in place of
the variance. This is equivalent.
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The Normal Distribution, Mathematically

▶ The normal density function is given by

f (x ; µ, σ2) = 1√
2πσ

exp
−(x − µ)2

2σ2

 .

▶ This is defined on −∞ < x < ∞.

▶ It can be shown that E [X ] = µ and that var(X ) = σ2.

▶ Moreover, this is a valid density.

▶ There is no closed form expression for the CDF.
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Computing with the Normal Distribution
▶ The form of the PDF makes probability calculations challenging

as they generally cannot be solved analytically.

▶ Instead, we typically use software or tables.
▶ A common strategy for dealing with the normal distribution is to

transform results to follow the standard normal distribution.

▶ The standard normal has µ = 0 and σ2 = 1.
▶ If X is distributed as N(µ, σ2) then

Z = X − µ

σ
∼ N(0, 1).

▶ We denote the PDF of the standard normal as φ(z) and the CDF of the
standard normal as Φ(z) = P(Z ≤ z).

▶ This transformation can be undone to revert back to N(µ, σ2).
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Properties of the Standard Normal

▶ Nearly all of the density falls in the interval ±3 (> 0.99).

▶ Standard normal tables (values for Φ(z)) are commonly
published in statistics textbooks.

▶ While you will see these tables, you will never be expected to use them
in this course.

▶ In the modern days, using software is more accurate and easier to do.

▶ Percentiles of the normal distribution can be found as with any
continuous distribution.

▶ If Zp is the p-th percentile of Z , then Xp = µ + Zpσ.
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Critical Values for the Standard Normal

▶ We most often care about tail values of the normal distribution.

▶ If we take zα to be the value such that P(Z ≤ zα) = α, this is
typically called the α level critical value.

▶ We will often be concerned with z0.05 / z0.95, Z0.025 and Z0.975.

▶ Note that Zα = −Z1−α due to symmetry of the standard normal.
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The Empirical Rule

▶ The empirical rule gives us a quick way to determine what to
expect to see

▶ 68% of observations fall within µ ± σ.

▶ 95% of observations fall within µ ± 2σ.

▶ 99.7% of observations fall within µ ± 3σ.
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Normal Approximation to the Binomial Distribution

▶ If n is large, and p is closed to 0.5, then the binomial
distribution is well approximated by a normal distribution.

▶ Specifically, we would have X ∼̇N(np, np(1 − p)).

▶ This works well if np ≥ 10 and n(1 − p) ≥ 10.

▶ Note, because the distribution is discrete we need to use a
continuity correction.

▶ If we wish to consider X ≤ x , then we should really consider X ≤ x + 0.5
▶ If we wish to consider X ≥ x , then we should really consider

X ≥ x − 0.5.
▶ If we want X > x this is X ≥ ⌊x − ϵ⌋ (and vice versa for X < x).
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Why Use the Normal Approximation?

▶ It is generally easier to reason about normally distributed
variables.

▶ As you progress through statistics and probability, your intuition for
normal distributions will improve.

▶ Because of normal tables, it is generally easier computationally
to use the approximation.

▶ With modern software, this is becoming less of an issue.

▶ It gives us access to the empirical rule.



Why Use the Normal Approximation?

▶ It is generally easier to reason about normally distributed
variables.

▶ As you progress through statistics and probability, your intuition for
normal distributions will improve.

▶ Because of normal tables, it is generally easier computationally
to use the approximation.

▶ With modern software, this is becoming less of an issue.

▶ It gives us access to the empirical rule.



Why Use the Normal Approximation?

▶ It is generally easier to reason about normally distributed
variables.

▶ As you progress through statistics and probability, your intuition for
normal distributions will improve.

▶ Because of normal tables, it is generally easier computationally
to use the approximation.

▶ With modern software, this is becoming less of an issue.

▶ It gives us access to the empirical rule.



Why Use the Normal Approximation?

▶ It is generally easier to reason about normally distributed
variables.

▶ As you progress through statistics and probability, your intuition for
normal distributions will improve.

▶ Because of normal tables, it is generally easier computationally
to use the approximation.

▶ With modern software, this is becoming less of an issue.

▶ It gives us access to the empirical rule.



Why Use the Normal Approximation?

▶ It is generally easier to reason about normally distributed
variables.

▶ As you progress through statistics and probability, your intuition for
normal distributions will improve.

▶ Because of normal tables, it is generally easier computationally
to use the approximation.

▶ With modern software, this is becoming less of an issue.

▶ It gives us access to the empirical rule.



Summary

▶ The normal distribution is an incredibly important distribution
for characterizing natural processes.

▶ It is characterized by its mean and variance, and has a closed
form PDF (but not CDF).

▶ Translations to the standard normal permit easier calculations
with standard critical values and the empirical rule.

▶ The normal distribution can approximate certain binomial
distributions, so long as continuity corrections are applied.
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