STAT 2593 Lecture 018 - The Normal Distribution

Dylan Spicker

Learning Objectives

- 1. Understand the normal distribution, its use cases, and its structure.
- 2. Understand the standard normal distribution, and how to transform to/from it.
- 3. Understand and apply the empirical rule.
- 4. Understand the normal approximations to other probability distributions.

The normal distribution is the most important distribution in all of statistics and probability.

- The normal distribution is the most important distribution in all of statistics and probability.
- ▶ It is characterized the the typical "bell curve" shape.

- The normal distribution is the most important distribution in all of statistics and probability.
- ► It is characterized the the typical "bell curve" shape.
 - It characterizes many natural phenomena (e.g., heights, weights, measurement errors, reaction times, etc.)

- The normal distribution is the most important distribution in all of statistics and probability.
- ► It is characterized the the typical "bell curve" shape.
 - It characterizes many natural phenomena (e.g., heights, weights, measurement errors, reaction times, etc.)
- It is a symmetric, bell-shaped curve, characterized by two parameters

- The normal distribution is the most important distribution in all of statistics and probability.
- ► It is characterized the the typical "bell curve" shape.
 - It characterizes many natural phenomena (e.g., heights, weights, measurement errors, reaction times, etc.)
- It is a symmetric, bell-shaped curve, characterized by two parameters
 - The mean μ .

- The normal distribution is the most important distribution in all of statistics and probability.
- ► It is characterized the the typical "bell curve" shape.
 - It characterizes many natural phenomena (e.g., heights, weights, measurement errors, reaction times, etc.)
- It is a symmetric, bell-shaped curve, characterized by two parameters
 - ▶ The mean μ .
 - The variance σ^2

- The normal distribution is the most important distribution in all of statistics and probability.
- ► It is characterized the the typical "bell curve" shape.
 - It characterizes many natural phenomena (e.g., heights, weights, measurement errors, reaction times, etc.)
- It is a symmetric, bell-shaped curve, characterized by two parameters
 - ▶ The mean μ .
 - ▶ The variance σ^2
 - Sometimes, researchers will use the standard deviation, σ , in place of the variance. This is equivalent.

The normal density function is given by

$$f(x; \mu, \sigma^2) = rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

The normal density function is given by

$$f(x; \mu, \sigma^2) = rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

▶ This is defined on $-\infty < x < \infty$.

The normal density function is given by

$$f(x; \mu, \sigma^2) = rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

▶ This is defined on $-\infty < x < \infty$.

• It can be shown that $E[X] = \mu$ and that $var(X) = \sigma^2$.

The normal density function is given by

$$f(x; \mu, \sigma^2) = rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

▶ This is defined on $-\infty < x < \infty$.

• It can be shown that $E[X] = \mu$ and that $var(X) = \sigma^2$.

► The normal density function is given by

$$f(x; \mu, \sigma^2) = rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

▶ This is defined on $-\infty < x < \infty$.

- It can be shown that $E[X] = \mu$ and that $var(X) = \sigma^2$.
- Moreover, this is a valid density.
- ▶ There is no closed form expression for the CDF.

The Normal Distribution, Graphically

The form of the PDF makes probability calculations challenging as they generally cannot be solved analytically.

- The form of the PDF makes probability calculations challenging as they generally cannot be solved analytically.
 - Instead, we typically use software or tables.

- The form of the PDF makes probability calculations challenging as they generally cannot be solved analytically.
 - Instead, we typically use software or tables.
- A common strategy for dealing with the normal distribution is to transform results to follow the **standard normal distribution**.

- The form of the PDF makes probability calculations challenging as they generally cannot be solved analytically.
 - Instead, we typically use software or tables.
- A common strategy for dealing with the normal distribution is to transform results to follow the standard normal distribution.

• The standard normal has $\mu = 0$ and $\sigma^2 = 1$.

- The form of the PDF makes probability calculations challenging as they generally cannot be solved analytically.
 - Instead, we typically use software or tables.
- A common strategy for dealing with the normal distribution is to transform results to follow the standard normal distribution.
 - The standard normal has $\mu = 0$ and $\sigma^2 = 1$.
 - If X is distributed as $N(\mu, \sigma^2)$ then

$$Z=rac{X-\mu}{\sigma}\sim N(0,1).$$

- The form of the PDF makes probability calculations challenging as they generally cannot be solved analytically.
 - Instead, we typically use software or tables.
- A common strategy for dealing with the normal distribution is to transform results to follow the standard normal distribution.
 - The standard normal has $\mu = 0$ and $\sigma^2 = 1$.
 - If X is distributed as $N(\mu, \sigma^2)$ then

$$Z=rac{X-\mu}{\sigma}\sim N(0,1).$$

We denote the PDF of the standard normal as φ(z) and the CDF of the standard normal as Φ(z) = P(Z ≤ z).

- The form of the PDF makes probability calculations challenging as they generally cannot be solved analytically.
 - Instead, we typically use software or tables.
- A common strategy for dealing with the normal distribution is to transform results to follow the standard normal distribution.
 - The standard normal has $\mu = 0$ and $\sigma^2 = 1$.
 - If X is distributed as $N(\mu, \sigma^2)$ then

$$Z=rac{X-\mu}{\sigma}\sim N(0,1).$$

- We denote the PDF of the standard normal as φ(z) and the CDF of the standard normal as Φ(z) = P(Z ≤ z).
- ► This transformation can be undone to revert back to $N(\mu, \sigma^2)$.

• Nearly all of the density falls in the interval ± 3 (> 0.99).

- Nearly all of the density falls in the interval ± 3 (> 0.99).
- Standard normal tables (values for Φ(z)) are commonly published in statistics textbooks.

- Nearly all of the density falls in the interval ± 3 (> 0.99).
- Standard normal tables (values for Φ(z)) are commonly published in statistics textbooks.
 - While you will see these tables, you will never be expected to use them in this course.

- Nearly all of the density falls in the interval ± 3 (> 0.99).
- Standard normal tables (values for Φ(z)) are commonly published in statistics textbooks.
 - While you will see these tables, you will never be expected to use them in this course.
 - ▶ In the modern days, using software is more accurate and easier to do.

- Nearly all of the density falls in the interval ± 3 (> 0.99).
- Standard normal tables (values for Φ(z)) are commonly published in statistics textbooks.
 - While you will see these tables, you will never be expected to use them in this course.
 - ▶ In the modern days, using software is more accurate and easier to do.
- Percentiles of the normal distribution can be found as with any continuous distribution.

- Nearly all of the density falls in the interval ± 3 (> 0.99).
- Standard normal tables (values for Φ(z)) are commonly published in statistics textbooks.
 - While you will see these tables, you will never be expected to use them in this course.
 - ▶ In the modern days, using software is more accurate and easier to do.
- Percentiles of the normal distribution can be found as with any continuous distribution.

▶ If
$$Z_p$$
 is the *p*-th percentile of *Z*, then $X_p = \mu + Z_p \sigma$.

▶ We most often care about *tail values* of the normal distribution.

▶ We most often care about *tail values* of the normal distribution.

▶ If we take z_{α} to be the value such that $P(Z \le z_{\alpha}) = \alpha$, this is typically called the α level **critical value**.

▶ We most often care about *tail values* of the normal distribution.

▶ If we take z_{α} to be the value such that $P(Z \le z_{\alpha}) = \alpha$, this is typically called the α level **critical value**.

▶ We will often be concerned with $z_{0.05}$ / $z_{0.95}$, $Z_{0.025}$ and $Z_{0.975}$.

▶ We most often care about *tail values* of the normal distribution.

If we take z_α to be the value such that P(Z ≤ z_α) = α, this is typically called the α level critical value.

• We will often be concerned with $z_{0.05}$ / $z_{0.95}$, $Z_{0.025}$ and $Z_{0.975}$.

Note that $Z_{\alpha} = -Z_{1-\alpha}$ due to symmetry of the standard normal.

The Empirical Rule

The empirical rule gives us a quick way to determine what to expect to see

The Empirical Rule

- The empirical rule gives us a quick way to determine what to expect to see
 - 68% of observations fall within $\mu \pm \sigma$.

The Empirical Rule

- The empirical rule gives us a quick way to determine what to expect to see
 - 68% of observations fall within $\mu \pm \sigma$.
 - ▶ 95% of observations fall within $\mu \pm 2\sigma$.

The Empirical Rule

- The empirical rule gives us a quick way to determine what to expect to see
 - 68% of observations fall within $\mu \pm \sigma$.
 - ▶ 95% of observations fall within $\mu \pm 2\sigma$.
 - ▶ 99.7% of observations fall within $\mu \pm 3\sigma$.

If n is large, and p is closed to 0.5, then the binomial distribution is well approximated by a normal distribution.

- If n is large, and p is closed to 0.5, then the binomial distribution is well approximated by a normal distribution.
- Specifically, we would have $X \sim N(np, np(1-p))$.

- If n is large, and p is closed to 0.5, then the binomial distribution is well approximated by a normal distribution.
- Specifically, we would have $X \sim N(np, np(1-p))$.
 - This works well if $np \ge 10$ and $n(1-p) \ge 10$.

- If n is large, and p is closed to 0.5, then the binomial distribution is well approximated by a normal distribution.
- Specifically, we would have $X \sim N(np, np(1-p))$.
 - This works well if $np \ge 10$ and $n(1-p) \ge 10$.
- Note, because the distribution is discrete we need to use a continuity correction.

- If n is large, and p is closed to 0.5, then the binomial distribution is well approximated by a normal distribution.
- Specifically, we would have $X \sim N(np, np(1-p))$.
 - This works well if $np \ge 10$ and $n(1-p) \ge 10$.
- Note, because the distribution is discrete we need to use a continuity correction.
 - If we wish to consider $X \le x$, then we should really consider $X \le x + 0.5$

- If n is large, and p is closed to 0.5, then the binomial distribution is well approximated by a normal distribution.
- Specifically, we would have $X \sim N(np, np(1-p))$.
 - This works well if $np \ge 10$ and $n(1-p) \ge 10$.
- Note, because the distribution is discrete we need to use a continuity correction.
 - If we wish to consider $X \le x$, then we should really consider $X \le x + 0.5$
 - If we wish to consider X ≥ x, then we should really consider X ≥ x − 0.5.

- If n is large, and p is closed to 0.5, then the binomial distribution is well approximated by a normal distribution.
- Specifically, we would have $X \sim N(np, np(1-p))$.
 - This works well if $np \ge 10$ and $n(1-p) \ge 10$.
- Note, because the distribution is discrete we need to use a continuity correction.
 - If we wish to consider $X \le x$, then we should really consider $X \le x + 0.5$
 - If we wish to consider X ≥ x, then we should really consider X ≥ x − 0.5.
 - If we want X > x this is $X \ge \lfloor x \epsilon \rfloor$ (and vice versa for X < x).

It is generally easier to reason about normally distributed variables.

- It is generally easier to reason about normally distributed variables.
 - As you progress through statistics and probability, your intuition for normal distributions will improve.

- It is generally easier to reason about normally distributed variables.
 - As you progress through statistics and probability, your intuition for normal distributions will improve.
- Because of normal tables, it is generally easier computationally to use the approximation.

- It is generally easier to reason about normally distributed variables.
 - As you progress through statistics and probability, your intuition for normal distributions will improve.
- Because of normal tables, it is generally easier computationally to use the approximation.
 - ▶ With modern software, this is becoming less of an issue.

- It is generally easier to reason about normally distributed variables.
 - As you progress through statistics and probability, your intuition for normal distributions will improve.
- Because of normal tables, it is generally easier computationally to use the approximation.
 - ▶ With modern software, this is becoming less of an issue.
- It gives us access to the empirical rule.

Summary

- The normal distribution is an incredibly important distribution for characterizing natural processes.
- It is characterized by its mean and variance, and has a closed form PDF (but not CDF).
- Translations to the standard normal permit easier calculations with standard critical values and the empirical rule.
- The normal distribution can approximate certain binomial distributions, so long as continuity corrections are applied.